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Abstract—There are various methods to monitor human respi-
ration. Traditional methods of monitoring the human respiratory
process often rely on complex medical equipment, which makes
it difficult for users to operate. Nowadays, more and more
researchers are focusing on smartphone-based systems that
use mobile phones to transmit ultrasound to the chest and
abdomen of the human body and use the unique reverse echo of
ultrasound to collect respiratory signals. However, this method
is easily disturbed by the environment, clothing, equipment, and
other factors. Thus, the accuracy is unsatisfactory. This paper
presents a method to optimize the respiratory signals collected
by ultrasound. This method is based on supervised learning.
Piezoelectric sensors and mobile phones are used to monitor
human respiratory signals. A Long-Short Term Memory (LSTM)
is established to learn the expression from ultrasonic signals to
piezoelectric signals to improve the accuracy of signal acquisition.
The results show that the model has good performance in both
the time and frequency domains, achieving less than 0.05 mean
absolute error (MAE) and 0.8779 intersections over union (IoU).
The model can be used to optimize the ultrasound respiratory
signals.

Index Terms—ultrasonic perception; piezoelectric sensing; su-
pervised learning; signal optimization

I. INTRODUCTION

With the improvement of people’s life quality and the devel-
opment of wearable devices, the measurement and monitoring
of individual vital signs have become a topic of great interest.
Respiration is an essential indicator among them. As one of the
most important vital signs in humans, respiratory monitoring
is essential for disease detection and prevention. Respiratory
monitoring can detect many chronic diseases, including asthma
and chronic obstructive pulmonary disease [1]. Monitoring
respiration can also provide insight into a user’s sleep and
emotional state. The elderly commonly experience abnormal
respiratory events, such as obstructive or central sleep ap-
nea [2]. These breathing disorders can reduce sleep quality
and even become life-threatening.

Traditional breath monitoring requires users to wear cum-
bersome and costly equipment on their bodies.

In recent years, some researchers have proposed using
acoustic data to monitor human respiration; the system can
detect the sounds of cough, sneezing, and sniffling. However,
this method is easily disturbed by the surrounding environ-
ment, which limits the scale of current acoustic-data-based
respiration monitor systems [3], [4].

Other researchers proposed using mobile phones to transmit
ultrasonic waves to monitor humans’ respiratory signals. This
method’s advantage is that it is simple to generate transmitted
signals, and individuals can carry them with them at all
times, making it suitable for long-term monitoring in daily
life [1], [2], [5]. In addition, the ultrasonic wave is a kind of
mechanical wave. Therefore, users do not need to worry about
long-term electromagnetic radiation monitoring.

Inhale and exhale are the two steps of the breathing cy-
cle. Air enters the lungs through the mouth or nose during
inhalation, causing the lungs to expand. This will cause
the expansion of the chest wall. Simultaneously, the bottom
diaphragm and the upper abdomen will contract. Inhalation
is the opposite of exhalation. Air will exit the human body
via the mouth or nose. As the air leaves the human body, the
chest wall will contract, and the diaphragm will relax, resulting
in a reduction in the volume of the chest and abdominal
cavities [6]. Respiratory chest movement alters the distance
between the speaker and the microphone, thereby altering the
phase of the reflected signal. After the reflected signal has
passed through the high pass filter and been demodulated, it
is possible to obtain human respiratory motion.

However, the ultrasonic reflection is susceptible to signif-
icant errors, and three factors primarily cause the analysis
noise:
• Due to the non-stationary and non-linear nature of the

ultrasonic signal, its echo signal contains a great deal of
helpful information and numerous abrupt components.

• Ultrasonic waves are reflected on the surface of human
clothing during the sampling process. Various textile ma-
terials will scatter ultrasonic waves to varying degrees in
this process, resulting in microstructure noise.

• The mobile phone will emit dispersive sounds similar to
white noise.
In conclusion, it is necessary to consider additional pro-

cessing of the signal sampled by the system to increase
its reliability. Existing de-noising techniques include, among
others, wavelet threshold de-noising, empirical mode decom-
position (EMD) threshold de-noising, joint wavelet, and EMD
threshold de-noising. However, these methods often result in
signal distortion during reconstruction. It is more difficult to
determine the threshold without prior knowledge of respiratory



Fig. 1. The system design

signals, so existing noise reduction methods cannot be used.
This paper proposes a method for optimizing the input

signal based on supervised learning. Concurrently, the piezo-
electric sensor and the ultrasonic method of the mobile phone
are used to collect the respiratory signals of users in the same
state. It is believed that the data collected by piezoelectric
sensors is more precise than by ultrasonic transducers. Then,
the supervised learning method is used to input the respiratory
signal recorded by ultrasound and output the respiratory signal
recorded by the piezoelectric sensor to establish a mapping to
learn how to convert the imprecise ultrasonic signal into a
more accurate piezoelectric signal. Then, use the piezoelectric
signal as the input of our system to refine the input signal.

Our significant contributions can be summarized as fol-
lows:

• We use the built-in speakers of off-the-shelf mobile phones
to emit stereo ultrasound signals to monitor human res-
piratory signals. Compared with traditional methods, this
method is portable and easy to operate.

• We propose an optimization method of ultrasonic respiratory
signal acquisition based on supervised learning. We use the
Long Short-Term Memory (LSTM) network to transform
ultrasonic signals into more accurate piezoelectric signals.
The output piezoelectric signal is used as the input of other
systems to improve the system’s accuracy.

• Using several indicators, including MAE and Person cor-
relation, evaluate the system in the time and frequency
domains. In particular, we define the IoU index in the time
domain. The model achieves less than 0.05 MAE, 0.8779
IoU, 0.76 Pearson correlation, and the two signals have a
good similarity in the frequency domain. The evaluation
result shows the effectiveness of this system.

The rest of this paper is organized as follows. Section II
introduces the related work. Section III presents the system
design and the working principles, followed by the implemen-
tation in Section IV. The evaluation of our system is shown
in Section V. Section VI concludes the paper.

II. RELATED WORK

A. Ultrasonic Sensing

In recent years, ultrasonic sensing has been a trendy re-
search topic. Its main principles are ranging and positioning.
The ultrasonic sensor system first obtains the object’s motion
trajectory, then detects the object’s motion through the classi-
fier or modeling. Specific application scenarios include speech
recognition [7], gesture recognition [8]–[10] and respiratory
monitoring [1], [2], [5], [11]–[15]. Specialized ultrasonic sen-
sors were used in past studies to monitor respiration signal [5],
[11]. However, since the built-in speakers and microphones in
mobile phones can also transmit and capture ultrasound signals
caused by motion, more ultrasonic sensing applications are
implemented on smartphones to improve accessibility. Active
sensing, i.e., emitting and receiving ultrasound signals with
the same mobile phone, is commonly used in such cases.
Current works on active ultrasonic sensing mainly focus on
detecting particular events from respiratory signals [2], [12],
[14], or the estimation of certain health metrics [1], [13], [15].
Nevertheless, issues such as human clothing and dispersive
sounds emitted by the phone that might cause interference
with the desired signal are seldom addressed, and there is still
space for further optimization.

B. Piezoelectric Sensing

Piezoelectric sensors can measure physical signals such
as displacement, acceleration, velocity, and pressure. Due
to its comprehensive frequency response and ideal dynamic
characteristics, a piezoelectric sensor is commonly used in
dynamic measurement tasks. The principle of piezoelectric
sensing is that when the human body contacts the sensor,
the sensor converts the small changes in the human body’s
gravity into a charge signal. Piezoelectric sensors can be
made from both organic and inorganic materials. However,
compared with inorganic piezoelectric materials such as alu-
minum nitride (AlN), organic materials such as polyvinylidene
fluoride (PVDF) are less expensive and more environmen-
tally friendly [16]. However, as the output impedance of



the organic material is high and the output signal is weak,
piezoelectric sensors made from organic material need to go
through the charge amplification circuit to output an electrical
signal [17]. Among the existing methods of respiratory signal
collection, piezoelectric sensing is the most accurate and
sensitive method. Furthermore, piezoelectric sensors can be
easily manufactured into a flexible thin film, so they can be
installed on beds conveniently without interfering with the
users’ sleep. For these reasons, piezoelectric sensing is widely
used to monitor respiration and heartbeat for healthcare and
clinical purposes [18]–[20]. Compared with previous methods,
we innovatively combine ultrasonic and piezoelectric sensing,
taking into account both advantages.

C. LSTM

As an improved recurrent neural network, long short-term
memory network (LSTM) is widely used in machine learning
fields. It can not only solve the problem that RNN cannot
deal with long-distance dependence but also solve common
problems such as gradient explosion or gradient disappearance
in neural networks, which is very effective in processing
sequence data. The structure of the LSTM network is shown
in Fig. 2. Unlike previous RNN models, LSTM is composed
of recurrently connected memory blocks, each containing an
input gate, an output gate [21], and a forget gate [22].

The forget gate determines what information to discard
from the cell state. It inputs the output ht−1 of the previous
state and the input information of the current state Xt into a
Sigmoid function to generate a value between 0 and 1, which is
multiplied by the cell state to determine how much information
to discard (keep). 0 indicates completely discard, and one
indicates completely retain. The forget gate, after connecting
ht−1 and Xt, is multiplied by a weight Wf and biased by bf ,
which is the parameter that the network needs to learn. If the
size of the hidden state (size of a hidden layer of neurons) is
hsize, then the size of Wf is hsize ∗hsize. The value of hsize

is manually set.
The input gate determines what new information to store

in the cell state. It inputs ht−1 from the previous state and
Xt from the current state into a Sigmoid function, producing
a value between 0 and 1 it to determine how much new
information we need to keep. At the same time, a tanh layer
obtains a candidate new information Ct to be added to the
cell state from the output ht−1 of the previous state and the
input Xt of the current state. Multiply the value it with the
candidate new information Ct to get the update we want
to add to the cell state. The input gate (a Sigmoid function
layer) and the tanh layer, both neural network layers, learn
their parameters as before the forget gate.

The output gate determines what information to output
from the cell state. As before, a Sigmoid function will first
produce a number between 0 and 1 ot to determine how
much information in the cell state we need to output. The cell
state information is first activated (nonlinear transformation)
through a tanh layer when multiplied by ot. So the output of

this LSTM block ht is got. The output gate also has its weight
parameters to be learned.

These gates can control the flow of information that enters
or exits the memory block, and the memory block can remem-
ber values over arbitrary time intervals. This structural design
allows LSTM to overcome the vanishing gradient problem
in previous RNN models. Having the capability to maintain
temporal memory, LSTM is an advanced method to deal with
temporal sequences. Relevant applications include time-series
prediction, natural language processing, and image caption-
ing [23]. Furthermore, LSTM has been proven to be helpful
in the fields of sound recognition and signal processing, as
shown in studies by Laffitte et al. [24], Lyu et al. [25], and
Wang et al. [26].

III. METHODOLOGY

A. Overview

The system design is shown in Fig. 1. We simultaneously
obtain ultrasonic and piezoelectric respiratory signals using a
mobile phone and a respiratory belt. Following downsampling,
the Savitsky-Golay filter, and normalization, the ultrasonic
signal is fed into the LSTM network. After low-pass filtering
and normalization, the processed piezoelectric signal serves as
the target output for supervised learning. Once the LSTM is
trained, and a model with good performance is obtained, the
network can convert a standardized ultrasonic input signal into
an output piezoelectric signal.

B. Ultrasonic Data Acquisition

Typically, the built-in speakers of most commercially avail-
able smartphones can produce sounds up to 22 kHz. [12], [14].
Therefore, the ultrasonic signal emitted by the speaker can be
expressed as:

s(t) = cos(2πf1t) + cos(2πf2t), (1)

where f1 = 18, 000 and f2 = 22, 000.
After the microphone records the reflected signal m(t), the

respiratory sampler first uses a high-pass filter to eliminate
components below 16 kHz. The reflected signal m(t) can be
considered as the product of the ultrasonic signal s(t), and the
original respiratory signal x(t) [9], [15]. Therefore,

m(t) = x(t) · s(t). (2)

The original respiratory signal x(t) is demodulated by
multiplying m(t) by s(t), and the result is passed through
a low-pass filter with a low cutoff frequency, such as 200Hz.
According to Equation (1) and (2), we have:

m(t)s(t) = x(t)s2(t) = x(t)[cos(2πf1t) + cos(2πf2t)]
2

= x(t)[cos2(2πf1t) + 2 cos(2πf1t) cos(2πf2t)

+ cos2(2πf2t)]

= x(t){1
2
[1 + cos(2π2f1t)] + cos(2π(f1 + f2)t)

+ cos(2π(f2 − f1)t) +
1

2
[1 + cos(2π2f2t)]}.

(3)



Fig. 2. LSTM network structure

After passing through the low-pass filter with the cut-
off frequency of 200Hz, the components cos (2π · 2f1t),
cos (2π · 2f2t), cos (2π(f1 + f2)t), and cos (2π(f1 − f2)t)
are eliminated. Therefore, we have

m(t)s(t) =⇒ x(t)

(
1

2
+

1

2

)
= x(t). (4)

The extracted x(t) is used as the respiratory signal for
subsequent steps.

C. Piezoelectric Sensor Acquisition

A piezoelectric sensor is a sensor of the piezoelectric
effect produced by some dielectrics under force. The so-
called piezoelectric effect refers to the phenomenon that some
dielectrics will generate charges on their surfaces due to the
polarization of internal controls when they are deformed (in-
cluding bending and stretching deformation) by external forces
in a specific direction. Piezoelectric materials can be divided
into single piezoelectric crystals, piezoelectric polycrystalline,
and organic piezoelectric materials. The most widely used
piezoelectric sensors are all kinds of piezoelectric ceramics,
including piezoelectric polycrystals and quartz crystals in
piezoelectric monocrystals. Other piezoelectric single crys-
tals, suitable for high-temperature radiation gallants, include
lithium niobate and bismuth germanate.

The accuracy of the pressure sensor made of a semiconduc-
tor core is easily affected by temperature, so the temperature
range of the pressure sensor should be considered. Static accu-
racy refers to the accuracy achieved at a specific temperature. It
can be divided into four grades: 0.01% – 0.1% Full Span(FS) is
super precision, 0.1–1% FS is precision, 1–2% FS is ordinary
precision, and 2–10% FS is low precision.

D. LSTM Network

The LSTM network was built according to the structure
shown in Fig. 2, and the dropout probability was set to be
0.3. The network’s input is the ultrasonic signal after low-pass
filtering and downsampling, and the dimension of each sample
is (480, 1). The network’s output is the filtered piezoelectric
signal, and the dimension of each sample is (250, 1).

The system flow chart is shown in Fig. 1.

Fig. 3. The experimental scenario
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Fig. 4. Ultrasonic respiratory signal collected by mobile phone

IV. IMPLEMENTATION

The experimental scenario is depicted in Fig. 3. The study
subject is lying flat on the bed with the breathing belt in its
exact position directly below the chest and the mobile phone
speaker placed directly above the body, perpendicular to the
chest. The participant maintains a steady respiration rate while
the two devices collect data simultaneously.

The mobile phone speaker is positioned perpendicular to the
participant’s chest. The left channel transmits 18 kHz high-
frequency signals, while the right channel transmits 22 kHz
signals. The distance between the mobile phone speaker and
the human body is about 5–10 cm. After the chest wall reflects
the signal, the mobile phone’s microphone receives the signal.
The respiratory signal of the human body can be obtained after
demodulation. The respiration sampler for this experiment is a
Samsung Galaxy Z flip 5G smartphone running Android 12 at
a sampling rate of 48 kHz. Ten volunteers’ respiratory signals
are collected. Each sample is collected for five minutes. The
sampled signals are shown in Fig. 4.

Fig. 5(a) shows that the signal has a carrier frequency.
A smoothing workflow is required to filter out this carrier
and make the transition along the curve more gradual. We
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Fig. 5. (a) Original ultrasonic signal (b) Filtered ultrasonic signal

use a Savitsky-Golay filter to process the ultrasonic signal.
The filtering results are depicted in Fig. 5(b), and the curve
becomes smooth.

We use a sleep monitoring tape to collect piezoelectric
signals. Its piezoelectric thin-film sensor is sensitive to weak
dynamic signals, including respiratory and heart rate signals.
The sleep monitoring belt is laid flat on the bed when in
use. When a person is lying on a bed, the piezoelectric film
sensor can detect the heartbeat and breathing fluctuations. The
respiratory and heart rates can be calculated and obtained.
In this experiment, we only require the respiration-related
piezoelectric signal.

Due to the hypersensitivity of the piezoelectric film, it is
impossible to accurately determine whether or not a person
is on or off the bed. A minor disturbance at the bedside
could trigger a false alarm. This system’s breathing belt has
a shielding function, providing excellent environmental anti-
interference. The membrane pressure sensor will only output
a pressure signal when the human body is supine, reducing
the likelihood of error.

The thin-film pressure sensor and piezoelectric thin-film
sensor are integrated into a 1.5 mm thick cloth belt with a
Universal Asynchronous Receiver/Transmitter (UART) signal
acquisition circuit board, as shown in Fig. 6. The Microcon-
troller Unit (MCU) of the circuit board contains an algorithm
that can directly output heart rate, respiratory rate, and other
information.

The input voltage of the breathing belt is 5V (DC). We
acquire data using the UART interface with a baud rate
of 115200. First, the original 57-byte signal data packet is
returned. The first 5 bytes are the American Standard Code
for Information Interchange (ASCII) characters of Odata,
followed by 50 bytes containing 25 groups of data, with a
2-byte, signed hexadecimal integer in each group (-32768–

Fig. 6. UART signal acquisition circuit board
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Fig. 7. the waveform of respiratory signal

32767). Representing the piezoelectric signal, the lower bit is
in front, and the higher bit is in the back. The rate of sampling
is 25 Hz. The final two bytes are also a signed hexadecimal
integer, but the effective range is 0–4096, and the sampling
rate is 1 Hz. They represent the piezoresistive signal.

A 9-byte result packet is then returned, with the first 5
bytes containing the ASCII characters for Bdata. A 1-byte
unsigned integer serial number ranging from 0 to 59 is fol-
lowed. The next 1-byte status value is an unsigned integer, with
0 indicating that the user is in bed, 1 indicating that the user
has left the bed, 2 indicating that the user’s body is moving,
3 indicating weak respiration, 4 indicating that a heavy object
is on the bed (not a person), and 5 indicating that the user
is snoring. The eighth 1-byte value is an unsigned integer
representing the heart rate, followed by a 1-byte respiration
rate. When respiration is weak, the output respiration rate is
0. After the user lies in bed for 25 seconds, the monitoring
tape activates and returns the heart and respiratory rates via
serial communication.

The data returned by the breathing belt is retrieved using a
serial port debugging tool. Every second, 66 bytes of data
will be returned. As depicted in Fig. 7, the returned data
is processed to obtain the respiratory signal waveform. The
ordinate represents the signal’s amplitude, while the abscissa
represents time. The piezoelectric respiratory signal is passed
through a low-pass filter with a cut-off frequency of 1 Hz, and
the waveform is shown in Fig. 8.

For the experiment, ten participants’ data were collected.
The volunteers, aged between 20 and 50, were five men and
five women in good health. During the experiment, they were
asked to lie flat on the bed at rest and breathe evenly. We had
all the volunteers wear either a shirt or a T-shirt during the
experiment.

In the same state, each data consists of an ultrasonic signal
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Fig. 8. the waveform of filtered piezoelectric respiratory signal
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Fig. 9. The waveform of the piezoelectric and ultrasonic respiratory signal

and a piezoelectric signal with a duration of one minute.
Within 10 seconds, they were aligned according to time and
randomly cut into fragments. A total of 2,000 data groups were
collected. The clipped ultrasonic signal segment serves as the
input to the network, while the piezoelectric signal segment
serves as the desired output. To train and evaluate the network,
we randomly selected 1,600 groups of data as the training set
and the remaining 400 groups as the test set.

As shown in Fig. 9, the piezoelectric and ultrasonic signals
are collected simultaneously in the same state, and it could be
roughly observed that the data are correlated.

V. EVALUATION

This section will evaluate the model’s performance in both
the time and frequency domains.

A. Time Domain Analysis

We use the mean absolute error (MAE), the intersection
over union (IoU), and the Pearson correlation coefficient in
the time domain to evaluate the model.

1) Mean Absolute Error (MAE): The mean absolute error
is calculated as

MAE =

∑N
i=1|ŷi − yi|

N
, (5)

where N is number of test cases, ŷi is the output given by
the model, and yi is the correct output. It shows the average
value of the absolute error between the predicted value and
the observed value. In general, the lower the MAE, the better.

We perform 1,000 iterations of testing on the LSTM model.
As shown in Fig. 10, the model achieves less than 0.05 MAE.

Fig. 10. The loss curve
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Fig. 11. (a) The model output results and the corresponding piezoelectric
signal results (b) Ultrasonic input data

2) Intersection over Union (IoU): To further verify the
model’s performance, we take a group of data with a length of
10 seconds as the model’s input, which does not belong to the
training set or the test set. The ultrasonic input data is shown
in Fig. 11(b). The model output results and the corresponding
piezoelectric signal results are shown in Fig. 11(a).

We use the intersection over union (IoU) in the time domain
to measure the similarity between the predicted signal and the
ground truth. IoU is a standard for measuring the accuracy of
detecting corresponding objects in a specific data set.

Here, we define the IoU of the two signals f(t) and g(t)
as:

IoU =

∫ T

0
min(f(t), g(t)) dt∫ T

0
max(f(t), g(t)) dt

(6)

That is, subtracting the intersection of two signals from
the union of two signals. The definition of the union and
intersection of signals is shown in Fig. 12. The larger the
IoU, the better. When the IoU equals 1, the two signals are
the same.

The IoU of the two signals in Fig. 11(a) is calculated to
be 0.8779, indicating that the signal we predicted is highly
similar to the ground truth.

3) Pearson correlation coefficient: The Pearson correlation
coefficient measures the degree of correlation between two
variables, and its value is between -1 and 1. When the Pearson
coefficient equals 1, it means a complete positive correlation,
0 means no correlation, and -1 means an absolute negative
correlation.
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Fig. 12. (a) Intersection of two signals (b) Union of two signals

The Pearson correlation coefficient between two variables
is defined as the quotient of covariance and standard deviation
between two variables:

ρX,Y =
cov(X,Y )

σXσY
=

E[(X − µX)(Y − µY )]

σXσY
. (7)

The above formula represents the overall correlation coef-
ficient, and ρ is often used as the representative symbol. The
Pearson correlation coefficient can be obtained by estimating
the covariance and standard deviation of the sample, which is
commonly expressed as γ:

γ =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2
(8)

The greater the absolute value of the Pearson correlation
coefficient, the greater the degree of correlation. The Pearson
correlation coefficient of the two curves in 11(a) is 0.76. It
shows that the predicted value correlates well with the ground
truth.

B. Frequency Domain Analysis

We perform a fast Fourier transform (FFT) on the two
signals in Fig. 11(a) to obtain the frequency domain diagram
of the two signals, as shown in Fig. 13. After filtering the DC
component, the first harmonic of the two signals is observed
to be 0.4 Hz. The second harmonic frequency is 0.6 Hz.
Therefore, the two signals have a high frequency domain
similarity.

VI. CONCLUSION

Numerous systems have begun attempting to use mobile
phones to emit ultrasound to monitor vital human health
metrics due to their portability and usability. However, mo-
bile phone ultrasonic waves are easily perturbed, resulting
in significant errors. This paper uses piezoelectric sensors
and supervised learning methods to propose a method for
optimizing ultrasonic signals for monitoring human respiratory
signals using ultrasonic waves emitted by mobile phones. The
trained model performs admirably. This technique can increase
the reliability of ultrasonic signals to improve the performance
of other systems.
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